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Abstract. We show that Schottky’s modular form, Jg , has in every genus an irre-

ducible divisor which contains the hyperelliptic locus. We also improve a corollary of

Igusa concerning Siegel modular forms that must necessarily vanish on the hyperel-

liptic locus.

§1. Introduction. In 1888 Schottky gave the famous modular cusp form J4

which vanishes on the Jacobian locus in H4, the Siegel upper half space of degree
four. In 1981 Igusa represented J4 as a rational multiple of ϑ2

D+
8
− ϑD+

16
where ϑD+

8

and ϑD+
16

are the theta series associated to the lattices D+
8 and D+

16, respectively.
This representation could be “accidental” in that the dimension of cusp forms of
weight 8 on H4 is small enough to make the the proportionality of forms arising
from different sources likely. On the other hand this representation could point to a
deeper relationship between differences of theta series and geometrically interesting
loci in Hg.

This paper provides a piece of data which supports the hypothesis of a deeper
relationship. We show that ϑ2

D+
8
− ϑD+

16
vanishes on the hyperelliptic locus in Hg

for every degree g. If we view ϑD+
8

and ϑD+
16

as complete invariants of their associ-
ated lattices then we see that Jacobians of hyperelliptic curves of any genus cannot
distinguish the D+

8 ⊕D+
8 lattice from the D+

16 lattice. The proof we give is a simple
modification of an argument due to Igusa in [3, page 845] that uses his homomor-
phism ρg : A(Γg) → S(2, 2g + 2). Theorem 3.8 shows that if f ∈ A(Γg) vanishes
at the cusps of the hyperelliptic locus then ρg(f) is divisible by the discriminant in
S(2, 2g + 2). Theorem 3.8 provides a brief proof of the more interesting Corollary
3.10 that the modular form ϑ2

D+
8
− ϑD+

16
always vanishes on the hyperelliptic locus.

The author is presently investigating whether or not this form vanishes on the Ja-
cobian locus for g ≥ 5. I thank William Duke for the interesting talk at Columbia
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University on Siegel modular forms and codes which led me to this investigation. I
also thank my colleague Armand Brumer for his explanations on these topics.

§2. Notation. We first review the notation concerning modular forms and
subvarieties of the moduli space of principally polarized abelian varieties. We let
Hg denote the Siegel upper half space of degree g ≥ 1, and let Γg = Spg(Z) denote
the Siegel modular group which acts on Hg. Let Ak(Γg) denote the Siegel modular
forms of weight k for Γg, and let A(Γg) =

⊕
k≥0Ak(Γg) be the graded ring of Siegel

modular forms. For g ≥ 2 a homomorphism of graded rings Φg : A(Γg) → A(Γg−1)
is defined for f ∈ A(Γg) and Ω ∈ Hg−1 by

(2.1 ) (Φgf)(Ω) = lim
λ→+∞

f

(
Ω 0
0 iλ

)
.

Elements in the kernel of Φg are called cusp forms. We view Ag = Hg/Γg as the
moduli space of principally polarized abelian varieties. The Torelli map sends a
compact Riemann surface of genus g to its Jacobian’s class in Ag. We let Jg denote
the closure in Ag of the image of the Torelli map and refer to Jg as the Jacobian
locus. In the same way we let hg denote the closure of the image of the restriction
of the Torelli map to hyperelliptic Riemann surfaces, and call hg the hyperelliptic
locus. We say that a Siegel modular form f ∈ A(Γg) vanishes on hg if for all Ω ∈ Hg

such that [Ω] ∈ hg we have f(Ω) = 0.
We now discuss lattices in Rn and their associated theta series. A lattice Λ ⊆ R

n

is called integral if for any �1, �2 ∈ Λ the value of the inner product 〈�1, �2〉 is
an integer. The following sequence of analytic functions ϑΛ are invariant under
isometries of the lattice Λ.

2.2 Definition. Let Λ be a lattice in Rn. For each g ≥ 1 the theta series of Λ,
ϑΛ : Hg → C is defined for Ω ∈ Hg by

ϑΛ(Ω) =
∑

�1,...,�g∈Λ

exp
(
iπ

∑g

j,k=1
Ωjk〈�j , �k〉

)
.

An integral lattice Λ is called even if for all � ∈ Λ we have 〈�, �〉 ∈ 2Z. If Λ is
an even self–dual lattice of dimension n we have ϑΛ ∈ An/2(Γg) for each g. For
such Λ we necessarily have that 8 divides n, and the examples relevant here are the
lattices D+

n for n ∈ 8Z+ in the notation of Conway and Sloane [1, page 119]. For
n = 8 there is one isometry class of even self–dual lattices, given by D+

8 ; for n = 16
there are two isometry classes, given by D+

8 ⊕ D+
8 and D+

16. Theta series satisfy
Φg(ϑΛ on Hg) = ϑΛ on Hg−1.

2.3 Definition. For g ≥ 1, define Jg ∈ A8(Γg) by Jg = ϑ(D+
8 ⊕D+

8 ) − ϑD+
16
.

From the work of Igusa in [4] we know that the vanishing of J4 defines J4 in A4.
Finally, we shall use the standard notation C[a1, . . . , ar], C(a1, . . . , ar) for poly-

nomial domains and their quotient fields in r variables. Let C[a1, . . . , ar]sym and
C(a1, . . . , ar)sym denote, respectively, the polynomial domain and rational function
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field fixed under the action of the symmetric group Sr on C(a·) induced by permu-
tations of a1, . . . , ar. For s ≥ 0, we denote by C[a·]sym

s the polynomials in C[a·]sym

of degree s in any one, hence in any, of the ai. Elements of C[a·]sym
s are said to have

weight s. We note that C[a·]sym =
⊕

s≥0 C[a·]sym
s but that this is not the usual

grading on C[a·]sym given by the homogeneous degree in the ai; rather it is the
grading given by the homogeneous degree in the elementary symmetric functions
of the ai. If we let ∆r =

∏
i<j(ai − aj) ∈ C[a1, . . . , ar] as usual, then the element

∆2
r ∈ C[a1, . . . , ar]sym

s has weight s = 2(r − 1).
§3. Jg vanishes on hg. In this section we prove that a hyperelliptic cusp

form of weight less than 8 + 4/g must vanish on the hyperelliptic locus, hg. The
main tools are Igusa’s homomorphism ρg : A(Γg) - - > S(2, 2g + 2) from a subring
of Siegel modular forms to a graded ring of “binary invariants,” and Tsuyumine’s
map Tg : S(2, 2g + 2) - - > C(a1, . . . , a2g) that gives the ρ-induced action of Φg on
S(2, 2g + 2).

3.1 Definition. For r ≥ 1, s ≥ 0, let S(2, r)s be the set of f ∈ C[a1, . . . , ar] such
that both (1) and (2) hold.

(1) For all

(
a b
c d

)
∈ SL2(C) we have

f

(
aa1 + b

ca1 + d
, . . . ,

aai + b

cai + d
, . . . ,

aar + b

car + d

)
= (

r∏
i=1

(cai + d))−sf(a1, . . . , ai, . . . , ar).

(2) f ∈ C[a1, . . . , ar]sym
s

3.2 Definition. For r ≥ 1, let S(2, r) =
⊕

s≥0 S(2, r)s.

3.3 Remarks. If we apply condition (1) of Definition 3.1 to

(
a b
c d

)
=

(
1 b
0 1

)

we see that S(2, r) ⊆ C[ai− aj | i, j ∈ {1, . . . , r}]∩C[a1 . . . , ar]sym. Also notice that
∆r satisfies condition (1) with s = r − 1.

3.4 Theorem. (Igusa, [3, page 844]) Let g ≥ 1. There exists a homomorphism
of graded rings ρg : Dom(ρg) ⊆ A(Γg) → S(2, 2g + 2) such that conditions (1)–(3)
hold.

(1) Dom(ρg) contains all modular forms of even weight.
(2) Ker(ρg) is the ideal of Dom(ρg) vanishing on hg.
(3) ρg multiplies weights by 1

2g.

3.5 Definition. [7, page 762] Let g,m ≥ 1. Define Tg :
⊕

m≥1 S(2, 2g + 2)gm →
C(a1, . . . , a2g) by, for I ∈ S(2, 2g + 2)gm,

(TgI)(a1, . . . , a2g) = (
2g∏
i=1

ai)−mI(a1, . . . , a2g, 0, 0).
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In [7] the domain of Tg (designated by Φ in [7]) is given as S(2, 2g + 2), the
range space of Tg is given as C(a1, . . . , a2g), but the formula defining Tg gives TgI
in the algebraic extension C(a1, . . . , a2g)( g

√
a1 . . . a2g). One easy way to mend this

discrepancy is to define Dom(Tg) =
⊕

m≥1 S(2, 2g+2)gm so that the range space of
Tg is C(a1, . . . , a2g). This is what has been done in Definition 3.5. The Dom(Tg) in
Definition 3.5 includes the ρg-images of even weight modular forms; this inclusion
is all we use here and all used in [7] to prove the following proposition.

3.6 Proposition. (Tsuyumine) [7, page 786] Let g ≥ 1. There is a choice of ρg
in Theorem 3.4 such that for even k and for all f ∈ Ak(Γg) we have (Tg ◦ ρg)(f) =
(ρg−1 ◦ Φg)(f) in S(2, 2g).

3.7 Definition. Let g ≥ 2, and let f ∈ A(Γg). We say that f is a hyperelliptic
cusp form when Φg(f) ≡ 0 on hg−1.

3.8 Theorem. Let k ∈ 2Z+. Let f ∈ Ak(Γg) be a hyperelliptic cusp form. Then
we have ∆2

2g+2 divides ρg(f) in S(2, 2g + 2).

Proof. Let f be a hyperelliptic cusp form so that we have Φg(f) ≡ 0 on hg−1 by
Definition 3.7. From (2) of Theorem 3.4 we have Φg(f) ∈ Ker(ρg−1). From Tsuyu-
mine’s Proposition 3.6 we have Tg(ρg(f)) = ρg−1(Φg(f)) = 0 in C(a1, . . . , a2g).
From the definition of Tg we see that ρg(f) is in the ideal (a2g+1, a2g+2) of the ring
C[a1, . . . , a2g+2]. Since ρg(f) ∈ S(2, 2g + 2) ⊆ C[ai − aj | i, j ∈ {1, . . . , 2g + 2}] we
have (a2g+1 − a2g+2) divides ρg(f) in C[a·]. Since C[a·] is a unique factorization
domain the facts that ρg(f) is divisible by (a2g+1−a2g+2) and that ρg(f) ∈ C[a·]sym

imply that ∆2g+2 divides ρg(f) in C[a·]. Since ρg(f)
∆2g+2

is an alternating polynomial

in the a· we have that ∆2g+2 divides ρg(f)
∆2g+2

in C[a·]. Since ∆2
2g+2 and ρg(f) are

both in S(2, 2g+ 2), their quotient is as well and we have that ∆2
2g+2 divides ρg(f)

in S(2, 2g + 2). �

3.9 Corollary. Let k ∈ 2Z+. Let f ∈ Ak(Γg) be a hyperelliptic cusp form. If
k < 8 + 4

g then f vanishes identically on hg.

Proof. We have that ∆2
2g+2 divides ρg(f) in S(2, 2g + 2) by Theorem 3.8. The

weight of ∆2
2g+2 is 2(2g+1) and the weight of ρg(f) is 1

2gk when ρg(f) is nontrivial.
However, we have 1

2gk < 2(2g + 1) by hypothesis so that ρg(f) being divisible by
∆2

2g+2 implies that ρg(f) = 0. Therefore we have f ≡ 0 on hg by Igusa’s Theorem
3.4. �

3.10 Corollary. For all g ≥ 1, the Siegel modular form Jg vanishes on the
hyperelliptic locus hg.

Proof. For g such that 1 ≤ g ≤ 4 this is known from the work of Witt [8], Kneser and
Igusa [4][5]. Corollary 3.10 follows by induction on g. Suppose that we have Jg ≡ 0
on hg, then we have Φg+1(Jg+1) = Jg ≡ 0 on hg so that Jg+1 is a hyperelliptic cusp
form. Jg+1 is of even weight 8 so that we may apply Corollary 3.9 to conclude that
Jg+1 ≡ 0 on hg+1. �
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Remark 3.11 . Corollary 3.11 may also be proven using Thomæ’s formula [3, pg.
838] and the theta identities in lemma 1 of [5, pg. 354]. It then reduces to the
following interesting polynomial identity which can be proven inductively by letting
a2g+1 = a2g+2. For g ≥ 1 we have the polynomial identity in Z[a1, . . . , a2g+2]:


 ∑

{T	T c}

∏
i<j; i,j∈T

(ai − aj)2
∏

i<j; i,j∈T c

(ai − aj)2




2

= 2g
∑

{T	T c}

∏
i<j; i,j∈T

(ai − aj)4
∏

i<j; i,j∈T c

(ai − aj)4.

The above sum is over the 1
2

(
2g+2
g+1

)
partitions T � T c of {1, 2, . . . , 2g+ 2} for which

both T and T c have g+ 1 elements. This formula was our original method of proof
and was also noted by the referee.

Finally, we mention that Jg is irreducible in A(Γg).

3.12 Proposition. For all g ≥ 4, the divisor of Jg in Ag is irreducible.

Proof. We will show by induction on g that the divisor of Jg is proper and irreducible
in A(Γg) for g ≥ 4. The case g = 4 is due to Igusa [4]. We use a principle of Freitag
which he deduces from his “Satz 2” in [2, 256]. “For g ≥ 3 an f ∈ A(Γg) has an
irreducible divisor, div(f), if f may not be written as the product of modular forms
of lower weight.” If we had Jg = ψ1ψ2 in A(Γg) where 0 < degψ1,degψ2 < 8
then applying the map Φg to Jg and using the induction hypothesis shows that
Jg is nontrivial on Hg and that Jg−1 = Φg(ψ1)Φg(ψ2) in A(Γg−1) where 0 <
deg Φ(ψ1),deg Φ(ψ2) < 8. This is impossible because div(Jg−1) is irreducible by
the induction hypothesis. This shows that div(Jg) is both proper and irreducible
in Ag. �
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